School | School of Engineering | College | College of Science and Engineering | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Credit level (Normal year taken) | SCQF Level 8 (Year 2 Undergraduate) | Availability | Available to all students | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SCQF Credits | 10 | ECTS Credits | 5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Summary | Ordinary differential equations, transforms and Fourier series with applications to engineering. Linear differential equations, homogeneous and non-homogeneous equations, particular solutions for standard forcings; Laplace transforms and applications; standard Fourier series, half range sine and cosine series, complex form; convergence of Fourier series, differentiation and integration of Fourier series. Introduction to Partial Differential Equations. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course description |
Differential Equations: - Linear Differential Equations 1 lecture - Linear constant coefficient Differential Equations 3 lectures - Second order linear constant coefficient differential equations, forcing and damping 2 lectures Laplace Transforms: - Definition, simple transforms, properties, inverse and shift theorem 3 lectures - Solution of ODEs 3 lectures Fourier Series: - Fourier series, coefficients, even/odd functions, linearity, convergence 2 lectures - Full range, half-range 2 lectures - Integration and differentiation of Fourier series 1 lecture Partial Differential Equations: - Wave equation, Heat or diffusion equation, Laplace equation 1 lecture - Solution of wave equation, D’alembert solution, separated solution 2 lectures |
Pre-requisites |
It is RECOMMENDED that students have passed <a “=”” href=“cxmath08060.htm” target=“_blank” title=“View Course details. Opens in a new window.”>Mathematics for Science and Engineering 1a (MATH08060) AND <a “=”” href=“cxmath08061.htm” target=“_blank” title=“View Course details. Opens in a new window.”>Mathematics for Science and Engineering 1b (MATH08061) |
Co-requisites | ||
Prohibited Combinations | Other requirements | None | ||
Additional Costs |
Students are expected to own a copy of : 1. Modern Engineering Mathematics by Glyn James, Prentice Hall, ISBN 978-0-273-73413-X 2. Advanced Modern Engineering Mathematics by Glyn James, Prentice Hall, ISBN 978-0-273-71923-6 |
Pre-requisites | Mathematics units passed equivalent to Mathematics for Science and Engineering 1a and Mathematics for Science and Engineering 1b, or Advanced Higher Mathematics (A or B grade) or Mathematics and Further mathematics A-Level passes (A or B grade). | |||
High Demand Course? | Yes |
Academic year 2022/23, Available to all students (SV1) | Quota:��None | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Start | Semester 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Timetable | Timetable | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning and Teaching activities (Further Info) |
Total Hours: 100 ( Lecture Hours 20, Seminar/Tutorial Hours 5, Formative Assessment Hours 2, Summative Assessment Hours 10, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 61 ) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Assessment (Further Info) | Written Exam 50 %, Coursework 50 %, Practical Exam 0 % | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Additional Information (Assessment) |
Written Exam 50%: Coursework 50%: The School has a 40% Rule for 1st and 2nd year courses, i.e. you must achieve a minimum of 40% in coursework and 40% in written exam components, as well as an overall mark of 40% to pass a course. If you fail a course you will be required to resit it. You are only required to resit components which have been failed. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Feedback | Not entered | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Exam Information | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Exam Diet | Paper Name | Hours & Minutes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Main Exam Diet S1 (December) | 1:30 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Resit Exam Diet (August) | 1:30 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
On completion of this course, the student will be able to:
|
Students are expected to own a copy of : 1. Modern Engineering Mathematics by Glyn James, Prentice Hall, ISBN 978-0-273-73413-X 2. Advanced Modern Engineering Mathematics by Glyn James, Prentice Hall, ISBN 978-0-273-71923-6 |
Graduate Attributes and Skills | Not entered |
Keywords | Ordinary differential equations,Partial differential equations,Laplace transforms,Fourier series |
Course organiser |
Dr Daniel Friedrich Tel: (0131 6)50 5662 Email: D.Friedrich@ed.ac.uk |
Course secretary |
Miss Mhairi Sime Tel: (0131 6)50 5687 Email: msime2@ed.ac.uk |
On completion of this course, the student will be able to:
|
Students are expected to own a copy of : 1. Modern Engineering Mathematics by Glyn James, Prentice Hall, ISBN 978-0-273-73413-X 2. Advanced Modern Engineering Mathematics by Glyn James, Prentice Hall, ISBN 978-0-273-71923-6 |
Graduate Attributes and Skills | Not entered |
Keywords | Ordinary differential equations,Partial differential equations,Laplace transforms,Fourier series |
Course organiser |
Dr Daniel Friedrich Tel: (0131 6)50 5662 Email: D.Friedrich@ed.ac.uk |
Course secretary |
Miss Mhairi Sime Tel: (0131 6)50 5687 Email: msime2@ed.ac.uk |