
Toucan Crossing Assignment
An Object-Oriented Approach

Jasper Day

Thu 10/27/2022

In this paper, we outline an object-oriented, easily extensible approach to modelling traffic
light behavior using the Python programming language. At its core, the simulation loops over
a function whose output corresponds to one second, or “frame” of real time. Every frame, all
of the objects in the scene run their update functions; the timers tick forwards, and the various
outputs are created.

In its current iteration, the code only updates the traffic light and illuminates the Blinkstick,
but the architecture of the code makes it very simple to extend its functionality to include a
2D representation of the scene and its contents, and to simulate the behaviour of pedestrians
and cars (and update the traffic light based on that simulated behaviour).

1 Class Structure

The first classes defined are the Period and TrafficLightAssignments classes. These classes
are simply wrappers to define constants, extending the functionality of Python’s Enum class.
Their purpose is to make the code simpler and more readable: it’s more convenient to store
the state of the traffic light as Period.I than as a simple int, and the Enum wrapper adds
little overhead to the actual runtime of the program.

All of the scene information is contained in an object of the Scene class. The Scene class also
implements the function for running a frame of simulation.

The traffic light logic is implemented in the TrafficLight class. The update method runs
different checks depending on the current state of the light. For example, in the first period
of operation (Period.I), the traffic light is stipulated to change if either:

1. A pedestrian has requested a change (by pressing the cross button) AND at least 6
seconds have elapsed since a car was last detected, OR

2. 20-60 seconds (depending on the size of the road) have elapsed since the beginning of
the period.

1

To implement this logic, the method checks both the time since its state has changed
(window.time_since_update) and the time since a pedestrian has requested a crossing
(window.time_since_button, currently unimplemented in the rest of the code). If either of
the requisite conditions (1) or (2) are met, then the traffic light changes state to the next
period.

2 Simulation Output

Currently, the main output of the simulation is the Blinkstick itself, a matrix of RGB LEDs
that changes color to match the current state of the traffic light. All of the interaction with
the Blinkstick is sandboxed behind an Application Programming Interface (API) class titled
BlinkstickAPI in the code.

When the API class is initialized, it attempts to find a Blinkstick. If none is found, an exception
is raised and the program unwinds. Once the Blinkstick has been found, it can be interacted
with through the functions within the BlinkstickAPI class.

BlinkstickAPI.clear_blinkstick clears the Blinkstick, and is called every frame of the
simulation. clear_blinkstick is a solution to the problem otherwise encountered setting the
LEDs on the Blinkstick: any LED set high in one state must be set low before switching to the
next state. In future iterations of the program, it might be advisable to call this function only
when the traffic light changes state. Currently, since the Blinkstick is cleared and re-lit every
frame of the simulation, there is a slight but visible flicker in the Blinkstick as the simulation
runs.

BlinkstickAPI.set_light is a method designed to interact with the TrafficLightAssignments
class through use of the “splat” operator **. This operator unpacks a dictionary of keys and
values into the arguments of a function. Using BlinkstickAPI.set_light in conjunction
with the TrafficLightAssignments class avoids unnecessary repeated work in specifying the
indices and values of the desired LEDs.

The output of the simulation could easily be extended. Since the window object contains a
framework for simulating a top-down map of the crossing, it would be easy to implement a
function that displays that map every frame. This could be accomplished through the terminal,
with a text output, or through the use of a plotting library like matplotlib.

3 Further Extensibility

Thanks to the object-oriented paradigm, the written code is easy to extend and change as
the engineering requirements of the simulation change over time. A framework is included for
scene simulation with realistic pedestrians and cars. These objects would be implemented as

2

subclasses of the SceneObject class, which allows the creation of arbitrary rectangular regions
within the scene.

When the SceneObject is initialized, the program checks whether the coordinates of the cor-
ners are valid, raising an exception if given invalid input. The coordinates are stored, enabling
simple methods universal to SceneObjects, particularly checking whether one SceneObject
contains another (highly important for pedestrian crossing buttons and car detectors).

To make this framework fully functional, the following features need to be implemented:

1. A pathfinding function for the pedestrians and cars to update their position towards
their destinations during the appropriate periods of the traffic light

2. A factory function (or set of factories) that creates cars and pedestrians at random
positions with random destinations throughout the simulation

3. An update function for the Pedestrian and Car classes that changes the simulation
state appropriately.

With these simple additions, a fully-fledged traffic light simulation application could easily be
created. And thanks to the class architecture, adding those features would be as simple as
extending the functionality of the given classes with a few new methods.

4 Conclusion

This software demonstrates a simple simulation of the state of a “toucan crossing” style traffic
light. The result is a highly-readable yet extensible codebase, which makes use of Python’s
object-oriented architecture. The code interfaces with external libraries, creates physical and
textual outputs, and accurately and completely implements the logic outlined in national
standard LTN2/95 for traffic lights.

3

A Traffic Light Periods and Timings

Period Use
Signal for
Pedestrians

Signal for
Vehicles Timing Variation

I Vehicle Running Red Green 20 - 60 (ends at either
max time or on
pedestrian demand +
gap. Vehicle actuation
cancels gap for 6 sec)

Traffic
volume,
pedestrian
button

II Amber to
Vehicles

Red Amber 3 n/a

III Vehicle
Clearance

Red Red 1 (gap in vehicles) - 3
(vehicle present)

Vehicle
actuation

IV Pedestrian
Crossing

Green Red 4 - 7 n/a

V Pedestrians keep
crossing

Black Red 3 n/a

VI Pedestrian
clearance

Black Red 0 - 22 (pedestrian
detection adds 2 sec)

Pedestrian
detection

VII Additional
Pedestrian
Crossing

Black Red 0 - 3 Pedestrian
detection

VIII All red Red Red 1 - 3 n/a
IX Red / Amber to

Vehicles
Red Red/Amber 2 n/a

4

B Toucan Crossing Python Code

++==++
|| Programming for Engineers: Toucan Crossing ||
||-------------+------------+-----------------||
|| Jasper Day | S2265891 | 2022/10/20 ||
++==++

Description:
============
`Period` tracks the state of the traffic light as the simulation advances.
The `window` object contains a grid on which `SceneObjects` are located.
#
As the simulation advances, every object (the traffic light and the scene
objects) is updated. The `window` object mutates as these objects are updated.
#
All of the logic (for traffic light state changes and `SceneObject` updates)
is contained in the `update` implied functions for their respective members.

from blinkstick import blinkstick
import matplotlib as mpt
import numpy as np
from enum import Enum
import time

class Period(Enum):
Enum type allows state comparison of our traffic light variable.
`int` enum lets us augment state by addition operator +=
I = 1
II = 2
III = 3
I, II, and III are for Mayfield Roads
IA, IIA, and IIIA are for Westfield Mains
IA = 4
IIA = 5
IIIA = 6
Pedestrian Cycle
IV = 7
V = 8
VI = 9

5

VII = 10
VIII = 11
IX = 12
red / amber for westfield mains
IXA = 13

class TrafficLightAssignments(dict, Enum):
Traffic Light assignments.
Traffic lights can be set with the splat operator **
MAYFIELD_ROADS_RED = {

"index": 0,
"name": "red"

}
MAYFIELD_ROADS_YELLOW = {

"index": 1,
"name": "yellow"

}
MAYFIELD_ROADS_GREEN = {

"index": 2,
"name": "green"

}
WESTFIELD_MAINS_RED = {

"index": 5,
"name": "red"

}
WESTFIELD_MAINS_YELLOW = {

"index": 4,
"name": "yellow"

}
WESTFIELD_MAINS_GREEN = {

"index": 3,
"name": "green"

}
PEDESTRIAN_LIGHT_GREEN = {

"index": 6,
"name": "green"

}
PEDESTRIAN_LIGHT_RED = {

"index": 7,
"name": "red"

}

6

class Scene():
def __init__(self, rows, columns):

scene = np.zeros([rows, columns])

Global counters
time_since_car = 0
time_since_ped = 0
time_since_button = 0
time since period updated
time_since_update = 0

Advance simulation by one frame
def simulation_step(self, traffic_light):

global TIME

TODO: broadcast call for all objects to update themselves (position, state, etc)

traffic_light.update(self)

Print current state to terminal
print(f"State: {traffic_light.state}, Time: {self.time_since_update}")

Tick timers forwards
TIME += 1
self.time_since_button += 1
self.time_since_car += 1
self.time_since_ped += 1
self.time_since_update += 1
time.sleep(0.5)

class BlinkstickAPI():
interface to easily change traffic lights
def __init__(self):

self.bstick = blinkstick.find_first()
if self.bstick == None:

raise Exception("No blinkstick found")

def clear_colors(self):
for i in range(0,8):

self.bstick.set_color(index=i, name="black")

7

def set_light(self, color_dict):
For use with TrafficLightAssignments
self.bstick.set_color(**color_dict)

class TrafficLight():
def __init__(self, state: Period):

self.state = state
self.blinkstick = BlinkstickAPI()

def update(self, window: Scene):
Clear traffic light
self.blinkstick.clear_colors()

if self.state == Period.I:
Vehicle Running (Mayfield Roads)
self.blinkstick.set_light(TrafficLightAssignments.MAYFIELD_ROADS_GREEN)
self.blinkstick.set_light(TrafficLightAssignments.WESTFIELD_MAINS_RED)
self.blinkstick.set_light(TrafficLightAssignments.PEDESTRIAN_LIGHT_RED)

if (window.time_since_car >= 6 and
window.time_since_update >= 10 and
window.time_since_update >= window.time_since_button):
Gap condition with pedestrian demand
self.state = Period.II
window.time_since_update = 0

elif window.time_since_update >= 20:
Max vehicle running duration
self.state = Period.II
window.time_since_update = 0

elif self.state == Period.II:
Amber to Vehicles (Mayfield Roads)
self.blinkstick.set_light(TrafficLightAssignments.MAYFIELD_ROADS_YELLOW)
self.blinkstick.set_light(TrafficLightAssignments.WESTFIELD_MAINS_RED)
self.blinkstick.set_light(TrafficLightAssignments.PEDESTRIAN_LIGHT_RED)

if window.time_since_update >= 3:
self.state = Period.III
window.time_since_update = 0

8

elif self.state == Period.III:
Vehicle Clearance
self.blinkstick.set_light(TrafficLightAssignments.MAYFIELD_ROADS_RED)
self.blinkstick.set_light(TrafficLightAssignments.WESTFIELD_MAINS_RED)
self.blinkstick.set_light(TrafficLightAssignments.PEDESTRIAN_LIGHT_RED)

if window.time_since_car >= 6 and window.time_since_update >= 1:
Gap condition
self.state = Period.IXA
window.time_since_update = 0

elif window.time_since_update >= 3:
self.state = Period.IXA
window.time_since_update = 0

if self.state == Period.IXA:
Amber / Yellow (Westfield Mains)
self.blinkstick.set_light(TrafficLightAssignments.MAYFIELD_ROADS_RED)
self.blinkstick.set_light(TrafficLightAssignments.WESTFIELD_MAINS_RED)
self.blinkstick.set_light(TrafficLightAssignments.WESTFIELD_MAINS_YELLOW)
self.blinkstick.set_light(TrafficLightAssignments.PEDESTRIAN_LIGHT_RED)

if window.time_since_update >= 2:
self.state = Period.IA
window.time_since_update = 0

if self.state == Period.IA:
Vehicle Running (Westfield Mains)
self.blinkstick.set_light(TrafficLightAssignments.MAYFIELD_ROADS_RED)
self.blinkstick.set_light(TrafficLightAssignments.WESTFIELD_MAINS_GREEN)
self.blinkstick.set_light(TrafficLightAssignments.PEDESTRIAN_LIGHT_RED)

if (window.time_since_car >= 6 and
window.time_since_update >= 10 and
window.time_since_update <= window.time_since_button):
Gap condition with pedestrian demand
self.state = Period.IIA
window.time_since_update = 0

elif window.time_since_update >= 20:

9

Max vehicle running duration
self.state = Period.IIA
window.time_since_update = 0

elif self.state == Period.IIA:
Amber to Vehicles (Westfield Mains)
self.blinkstick.set_light(TrafficLightAssignments.MAYFIELD_ROADS_RED)
self.blinkstick.set_light(TrafficLightAssignments.WESTFIELD_MAINS_YELLOW)
self.blinkstick.set_light(TrafficLightAssignments.PEDESTRIAN_LIGHT_RED)

if window.time_since_update >= 3:
self.state = Period.IIIA
window.time_since_update = 0

elif self.state == Period.IIIA:
Vehicle Clearance
self.blinkstick.set_light(TrafficLightAssignments.MAYFIELD_ROADS_RED)
self.blinkstick.set_light(TrafficLightAssignments.WESTFIELD_MAINS_RED)
self.blinkstick.set_light(TrafficLightAssignments.PEDESTRIAN_LIGHT_RED)

if window.time_since_car >= 6 and window.time_since_update >= 1:
Gap condition
self.state = Period.IV
window.time_since_update = 0

elif window.time_since_update >= 3:
self.state = Period.IV
window.time_since_update = 0

elif self.state == Period.IV:
Pedestrian Crossing
self.blinkstick.set_light(TrafficLightAssignments.MAYFIELD_ROADS_RED)
self.blinkstick.set_light(TrafficLightAssignments.WESTFIELD_MAINS_RED)
self.blinkstick.set_light(TrafficLightAssignments.PEDESTRIAN_LIGHT_GREEN)

if window.time_since_update >= 6:
Appropriate time for 10+ m road
self.state = Period.V
window.time_since_update = 0

elif self.state == Period.V:
Fixed black-out

10

self.blinkstick.set_light(TrafficLightAssignments.MAYFIELD_ROADS_RED)
self.blinkstick.set_light(TrafficLightAssignments.WESTFIELD_MAINS_RED)

if window.time_since_update >= 3:
self.state = Period.VI
window.time_since_update = 0

elif self.state == Period.VI:
Pedestrian Clearance
self.blinkstick.set_light(TrafficLightAssignments.MAYFIELD_ROADS_RED)
self.blinkstick.set_light(TrafficLightAssignments.WESTFIELD_MAINS_RED)
if window.time_since_ped >= 2 or window.time_since_update >= 22:

Pedestrians extend clearance by 2s
self.state = Period.VII
window.time_since_update = 0

elif self.state == Period.VII:
Additional Pedestrian Clearance
self.blinkstick.set_light(TrafficLightAssignments.MAYFIELD_ROADS_RED)
self.blinkstick.set_light(TrafficLightAssignments.WESTFIELD_MAINS_RED)

if window.time_since_ped >= 2 or window.time_since_update >= 3:
self.state = Period.VIII
window.time_since_update = 0

elif self.state == Period.VIII:
All-Red for 2s
self.blinkstick.set_light(TrafficLightAssignments.MAYFIELD_ROADS_RED)
self.blinkstick.set_light(TrafficLightAssignments.WESTFIELD_MAINS_RED)
self.blinkstick.set_light(TrafficLightAssignments.PEDESTRIAN_LIGHT_RED)

if window.time_since_update >= 2:
self.state = Period.IX
window.time_since_update = 0

elif self.state == Period.IX:
Red/Amber Period
self.blinkstick.set_light(TrafficLightAssignments.MAYFIELD_ROADS_RED)
self.blinkstick.set_light(TrafficLightAssignments.MAYFIELD_ROADS_YELLOW)
self.blinkstick.set_light(TrafficLightAssignments.WESTFIELD_MAINS_RED)

11

self.blinkstick.set_light(TrafficLightAssignments.PEDESTRIAN_LIGHT_RED)

if window.time_since_update >= 2:
self.state = Period.I
window.time_since_update = 0

class SceneObject():
def __init__(self, window:Scene, row_start:int, row_end:int, col_start:int, col_end:int, letter):

Check if bounds are valid
if not (row_start <= row_end < window.scene.shape[0] and

col_start <= col_end < window.scene.shape[1]):
raise Exception("Incorrect bounds for object")

self.row_start = row_start
self.row_end = row_end
self.col_start = col_start
self.col_end = col_end
self.letter = letter

def contains(self, scene_object):
return (self.row_start <= scene_object.row_start and

self.row_end >= scene_object.row_end and
self.col_start <= scene_object.col_start and
self.col_end >= scene_object.col_end)

def centroid(self) -> (int, int):
return (np.floor((row_start + row_end)/2), np.floor((col_start + col_end)/2))

class Sidewalk(SceneObject):
pass

class Road(SceneObject):
pass

class MobileObject(SceneObject):
def __init__(self,x:int,y:int,speed,destination: SceneObject, letter):

super().init(row_start=x,row_end=x,col_start=y,col_end=y, letter=letter)
self.destination = destination
self.speed = speed
self.dest_coords = destination.centroid()

12

def update_coords(self,new_x,new_y):
self.row_start = new_x
self.row_end = new_y
self.col_start = new_y
self.col_end = new_y

def time_step(self) -> (int, int):
pass

class Car(MobileObject): # Contents of Address Register. just kidding.
def __init__(self, x, y, destination: SceneObject):

super().init(x=x, y=y, destination=destination, letter='C')

class Pedestrian(MobileObject): # Contents of Address Register. just kidding.
def __init__(self, x, y, destination: SceneObject):

super().init(x=x, y=y, destination=destination, letter='P')

CONTROL FLOW STARTS HERE

Size of the crosswalk simulation matrix. One square is 1 meter on a side.
ROWS = 70
COLUMNS = 30
TIME = 0 # seconds

window = Scene(rows=ROWS, columns=COLUMNS)

traffic_light = TrafficLight(Period.I)

while True:
window.simulation_step(traffic_light)

13

	Class Structure
	Simulation Output
	Further Extensibility
	Conclusion
	Traffic Light Periods and Timings
	Toucan Crossing Python Code

